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Ab initio DDCI2 (difference-dedicated configuration interaction) calculations are performed on the exchange
coupling constant of the doubly-bridged Ni(II) complexes [Ni(en)2Cl]22+ and [Ni(terpy)(N3)]22+, which are modeled
by substituting the external ligands with ammonia groups. The variational CI space is selected on the grounds
of the effective Hamiltonian theory and includes all the second-order contributions to the difference between the
lowest quintet, triplet, and singlet states. Both complexes are found to be ferromagnetic, with coupling constants
of 1.8 and 21.1 cm-1, in good agreement with the experiment. A transformation of the molecular orbitals is also
proposed for large systems, enabling the molecular orbital set to be significantly truncatedsas well as the file of
two-electron integrals and the DDCI2 spaceswith no loss of efficiency.

1. Introduction

Weak interactions in polynuclear metal systems with unpaired
electrons leading to small energy splittings and their ferromag-
netic or antiferromagnetic character have been widely studied
in recent years. Biradical systems such as some Cu(II) (d9)
dimer complexes, with carboxylate, hydroxo, or halide bridges,1

are simple examples, with one well-localized unpaired electron
on each metal center, resulting in a small singlet-triplet energy
gap, the sign of which depends on the ligands and on the metal
coordination among other factors. Several bridged binuclear
complexes of a more complex electronic structure have also
been synthesized and their magnetic behaviors analyzed in the
last two decades. Dimers with Ni(II) (d8),2-4 V(III) (d 2), and
Cr(III) (d3)5 have been described, as well as some polynuclear
complexes.6 Most of these complexes are antiferromagnetic.
The spin interaction in these systems is usually described

using the phenomenological Heisenberg Hamiltonian

whereSi, Sj are local total spin operators andJij the exchange
parameters. The summation may in general be limited to the
pairs of nearest neighbors. The energy levels are thus expressed
as functions of the exchange parameters, and by a fit of the
magnetic susceptibility versus the temperature curve, the
exchange parameters are evaluated from the experiment. A
negative value of the coupling constant indicates antiferromag-
netic coupling and has been attributed by Anderson7 to indirect
coupling through the bridge ligands or a superexchange mech-
anism. For dimers with total spinS1 at each magnetic center,
the possible states have total spinS ) 0, 1, ..., 2S1 and the
difference between energy levels is given by

From a quantum chemical point of view, in an early work
Hay et al.8 presented a semiquantitative approach to the
exchange coupling in copper dimers which was based on an
orbital analysis. Although successful qualitative predictions
have been made from this method or related ones,9 nonempirical
calculations are needed to obtain quantitative estimations,
especially for systems such as Ni(II) or Cr(III) complexes, since
the complexity of the electronic structure and of the prediction
of magnetic properties quickly increases with the number of
unpaired electrons on the metal center as well as with the
number of paramagnetic centers.

† Universitat Rovira i Virgili.
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A few quantitative approaches to the problem have been
proposed. Noodleman10 developed a formalism based on
unrestricted Hartree-Fock (UHF) broken-symmetry calcula-
tions, which was applied to polynuclear sulfur-bridged iron
complexes.11 Doubly-chloride-bridged copper dimers12 and
oxo-bridged titanium dimers13 have also been studied using the
same procedure. A second-order perturbative development of
the CI expansion was proposed by de Loth et al.14 for biradical
systems, and it was applied to several bridged copper dimers15

with little computational effort. Although there was good
agreement in most cases, some important higher order effects
appeared to be neglected. On the basis of the same perturbative
considerations, we recently presented a variational method for
the ab initio calculation of the exchange coupling constant of
biradical systems. When this method was applied to dihalide-
bridged copper dimers16,17 or to nitroxide biradicals,18 a good
quantitative agreement with experimental results was obtained.
The method, which was recently generalized to apply to
magnetic exchange interactions in polynuclear systems19 is based
on the definition of a minimal model space. In the framework
of the quasi-degenerate perturbation theory, a set of determinants
contributing to the energy splitting is then established on the
basis of a second-order development of the corresponding
effective Hamiltonian. This set of determinants is then treated
variationally. The model space in these magnetic problems is
a subspace of the complete active space (CAS) generated by
then unpaired electrons inn orbitals, and the determination of
the exchange coupling can be considered as a particular case
of the more general scheme of specific CI for determining
energy differences20 that we have called the difference-dedicated
configuration interaction (DDCI) method. Since some additional
restrictions appear in the exchange coupling treatment, we have
labeled this particular CI as DDCI2. The method will be briefly
reviewed in section 2.
Ab initio CI calculations of superexchange coupling on

systems with more than two unpaired electrons are rather scarce.
Very recently, multireference coupled electron pair approxima-
tion (MR-CEPA) calculations on oxygen-bridged binuclear
complexes of Ni(II)21 and of Ti(III), V(III), and Cr(III)22 were
reported. The aim of the present study is to show the efficiency
of the DDCI2 method in two Ni(II) dimers, with the representa-
tive bridging ligand chloride or azide in the end-on coordination

mode. Ferromagnetic interactions prevail in these complexes,
while with other types of bridges such as oxalate4j,k or squarate4l

the interaction is antiferromagnetic. The exchange coupling
constants of two doubly-bridged complexes have been deter-
mined: the bis(µ-chloro) complex [Ni(NH3)4Cl]22+ (1a) (Figure
1) and the bis(µ-azido) complex [Ni(NH3)4(N3)]22+ (2a) (Figure
2). These two complexes reproduce the experimental geometry
of the Ni2X2 core (X being the bridging ligand halide or azide)
of the complexes [Ni(en)2Cl]22+ (1b)2 and [Ni(terpy)(N3)]22+

(2b),3 and the external ligands have been replaced by NH3

groups. The aim of these calculations is to prove that the
methodology used is able to produce close agreement with
experimental results and therefore may be used to predict the
trend of the coupling in unknown systems.
Although the size of the DDCI2 space increases only with

the square of the size of the atomic basis set, when the number
of unpaired electrons rises, the DDCI2 space can increase
considerably, depending on the symmetry point group of the
molecule and on the size of the basis set. On the other hand,
if we want to calculate the exchange coupling in complexes
with a higher number of magnetic centers, the full transformation
of the atomic two-electron integrals to molecular integrals can
exceed storage capabilities. The MO set has to be truncated to
solve both problems. Natural orbitals (NO) have been exten-
sively used as a rational way of performing this truncation in
order to concentrate the CI expansion. Following the same
strategy, in previous works16,23we have described a perturbative
method to obtain observable-dedicated MOs (DMOs) that has
proved to be efficient. In section 3, we will extend this
procedure to obtain exchange coupling dedicated MOs (EC-
DMOs), which will permit the magnetic exchange coupling to
be calculated in systems with extended ligands or with a high
number of unpaired electrons.
The results for the two Ni(II) model dimers [Ni(NH3)4Cl]22+

(1a) and [Ni(NH3)4(N3)]22+ (2a) are reported in section 4. The
efficiency of both combined methods, DDCI2 and the trans-
formation into exchange coupling dedicated orbitals, is shown.
Some concluding remarks are given in section 5.

2. The DDCI2 Method To Evaluate the Exchange
Coupling Constant

The DDCI2 method was first derived to evaluate singlet-
triplet (S-T) gaps in biradical systems and was then generalized
for problems withn unpaired electrons inn orbitals. If a, b, c,
d, ... are the singly-occupied orbitals, the corresponding space
configuration may be written as [core]abcd.... The determinants
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Figure 1. Simplified geometry of the complex [Ni(NH3)4Cl]22+ (1a).

Figure 2. Simplified geometry of the complex [Ni(NH3)4(N3)]22+ (2a).
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{ΦI} belonging to the configuration only differ in their spin
distribution. Their number is(n/2n ) if n is even. For four
electrons, for instance, there are six determinants:

These six neutral valence bond determinants generate a model
space, S, which is a subspace of the (4,4) CAS. The spectrum
of the magnetic states may be obtained by diagonalizing the
effective Hamiltonian built on that model space. In the
framework of the quasi-degenerate perturbation theory at the
second-order level, the elements of the effective Hamiltonian
may be written

When the off-diagonal terms〈ΦI|Heff
(2)|ΦJ〉 are considered,

ΦI andΦJ necessarily differ by at least two spin orbitals. The
determinants{ΦR} which are obtained by a single-excitation
or a double-excitation process interact with bothΦI andΦJ and
may at most involve two degrees of freedom, i.e. two inactive
occupied MOs p and q,ΦR ) D+

pqfab|ΦI〉, two inactive virtual
MOs i and j,ΦR ) D+

abfij|ΦI〉, or one occupied and one virtual
inactive MO,ΦR ) D+

pafbj|ΦI〉.
As far as the diagonal elements are concerned, it has been

proved19 that all substitutions involving more than two inactive
MOs simply shift all the energies by the same amount, provided
that for the zeroth-order HamiltonianH0

a Møller-Plesset type definition is chosen.
The generators and the set of excited determinants interacting

with them, involving at least two active MOs, define a CI space,
and instead of using the perturbative development, this space
may be diagonalized to incorporate higher order effects and to
avoid the problem of intruder states. In order to make this CI
space invariant under rotations of the MO set, the model space
should be extended to the CAS and all the excited determinants
obtained from the CAS by single and double substitutions
involving at most two inactive orbitals (occupied or virtual)
should be included in the CI space. This extension adds a few
determinants which are not strictly necessary for the calculation
of the second-order effective Hamiltonian, but it ensures the
invariance of the DDCI2 space and therefore enables us to work
with symmetry-adapted MOs, which reduces the file of two-
electron integrals as well as the dimension of the DDCI2 space.
The value of the coupling constant is given by the difference
between two roots.
The physical effects that are considered in the DDCI2

treatment include all the effects up to the second order as
discussed by de Loth et al.:14,15 potential exchange, kinetic
exchange, dynamic spin polarization, and charge transfer, as
well as polarization of the ionic forms. The variational
treatment, however, introduces higher order effects, among
which are the contributions enabling the relaxation of the ionic
forms that appear at the fourth order.
The number of the determinants in the DDCI2 space is

proportional to Mno2nv2, where M is the number of the
determinants of the CAS,no is the number of inactive occupied
MOs, andnv is the number of inactive virtual MOs. While the
number of active electrons remains small, the size of the DDCI2
space remains manageable, since it only increases with the

square of the basis set dimension. But with increasing numbers
of unpaired electrons, the size of the DDCI2 space may become
too large. Moreover, the file of two-electron integrals may also
become very large depending on the ligands. In order to work
within manageable CI space sizes as well as the file of molecular
integrals, it may be desirable to truncate the MO set.

3. Truncation of the Set of Molecular Orbitals:
Exchange Coupling Dedicated Molecular Orbitals

It is well-known that SCF MOs are an inadequate starting
point for making good estimations of the correlation energy
when the MO set has to be truncated, since ordering the orbitals
according to their eigenvalues is not a good criterion, particularly
for virtual MOs, to estimate their contribution to the correlation
energy. Less arbitrary choices, such as natural orbitals (NOs),
are needed for this purpose. Ever since Lo¨wdin’s proposal long
ago,24 they have constantly proved their usefulness. There are
many possible ways of obtaining NOs, and of these, a low-
order perturbative construction of the one-particle density matrix
is a simple and inexpensive technique.25 By using a diagram-
matic representation, the elements of the density matrix are
obtained from the second-order diagrams of the correlation
energy by introducing an interaction line with theR ) as+ar
operator on the propagation lines of the Feynman diagrams,
wherea+ and a are the creation and annihilation operators,
respectively

We have proposed a generalization of this strategy to obtain
observable-dedicated MOs23 (DMOs), since any observable may
be calculated perturbatively as a sum of diagrams. The
procedure consists of the perturbative construction at the lowest
order of aparticipation matrix, analogous to the one-particle
density matrix, but including the contributions to the observable.
The eigenvalues, that we have calledparticipation numbers,
may be associated with the contribution of the corresponding
eigenvectors to the observable, and thus may be used as a
criterion for truncating the new molecular orbital set. The
efficiency of these DMOs has been proved for several applica-
tions, in particular for determining energy differences, such as
dissociation energies,23 or more recently electronic coupling in
electron-transfer problems.26 The method has also been used
for determining the S-T gap in biradical systems.16 The
transformed MOs have good convergence properties for the
evaluation of the observable, which permit the size of the file
of molecular integrals and of the CI space to be considerably
reduced. The purpose of the present work is to generalize the
procedure for more complex magnetic problems, such as the
calculation of the exchange coupling constant of Ni(II) dimers,
and to prove its efficiency. Since the S-T splitting in biradicals
is the simplest example of exchange coupling, we will first
review the procedure for this simple case.

(24) Löwdin, P. O.Phys. ReV. 1955, 97, 1474.
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3.1. S-T Gap Dedicated Molecular Orbitals. The dia-
grams associated with the observable are in this case all the
second-order energy contributions to the S-T gap. Since the
model space is limited to the two neutral VB determinants
associated with the singly-occupied orbitals a and b,|abh| and
|ajb|, as discussed above, the only contributions to the energy
difference come from the off-diagonal elements of the effective
Hamiltonian. As an example, for a double excitation on the
generator|...ppjqqjabh| (p, q are doubly occupied inactive MOs)
of the typeΦR ) |...pajqqjibh| (i is a virtual MO), i.e. a double
spin polarization process, the second-order diagrams are of the
type

The detailed second-order contributions to the S-T gap in
biradicals as well as their diagrammatic transcription have been
given by de Loth et al.14 The (r,s) element of the S-T
participation matrix is obtained simply by introducing an
interaction line with theR ) ar+as operator on either the hole
or particle propagation lines:

So as not to change the zeroth-order description, the unitary
transformation of the MOs is performed inside the subset of
inactive occupied MOs, on one hand, and of virtual MOs, on
the other. Both blocks of the participation matrix are diago-
nalized separately. The eigenvectors associated with the largest
absolute values of the roots are the new MOs which most
contribute to the S-T gap, or ST-DMOs.
It is important to point out that only a small part of the two-

electron molecular integrals are affected by this transformation,
since the interactions between the model space determinants
and the significant excitations involve at most two inactive
orbitals. Only the〈mn||rs〉 (m, n ) a, b; r, s are all MOs)
integrals are needed, which are easily stored in six matrices of
the atomic basis set dimension.
3.2. Molecular Orbitals Dedicated to Exchange Coupling.

The procedure can be generalized quite easily, by taking into
account some simple considerations. Two types of situations
appear in the off-diagonal elements of the effective Hamiltonian:
(i) The determinantsΦI andΦJ differ by two active spin

orbitals. The only possibility of keeping the remainingn - 2

propagation lines unchanged occurs when the difference consists
of the spin inversion of an abh-ajb type pair

Thus the diagrams are the same as for the 2-electron case, for
all the possible pairs of active orbitals and all the permutations
of R andâ spins in the remaining propagation lines. So the
contributions of each pair are multiplied by a factor

((n-2)/2
n- 2 ). The contribution to a matrix element is obtained by

adding the contributions of each pair.
(ii) The determinantsΦI andΦJ differ by four active spin

orbitals. The intermediate determinants in this case necessarily
belong to the CAS. Since only active orbitals are concerned,
the diagrams do not contribute to the blocks of the participation
matrix we are interested in.
The participation matrix can be easily constructed by looping

on all the pairs of active orbitals. Since only the〈mn||rs〉
integrals (m, n) active MOs; r, s) all MOs) are needed for
each pair, the same partial transformation of the molecular
integrals and the storage in six matrices for each pair of active
MOs may be used.
The diagonalization of the participation matrix by blocks of

occupied{p} and virtual {i} MOs provide new subsets of
occupied{p′} and virtual{i′} MOs. The roots with largest
absolute values are associated with the transformed orbitals
which most contribute to the exchange coupling (EC-DMOs).
Thus the participation numbers provide a logical way of
truncating the EC-DMO set with no loss of important physical
effects. The active set of MOs remains unchanged, and the
unitary transformation of the occupied and virtual MOs keeps
the energy obtained by diagonalizing the whole DDCI2 space
invariant.
The calculation procedure of the exchange coupling constant

can be schematized in the following steps: (1) SCF calculation;
(2) localization of the active MOs; (3) partial transformation of
the 2-electron integrals since all the integrals needed concern
two active orbitals; (4) perturbative construction of the exchange
coupling participation matrix and diagonalization of both
occupied and virtual MO blocks; (5) ordering of the eigenvectors
of each subset according to their participation and the truncation
of the EC-DMO set to obtain a 2-electron integral file and/or a
reasonably sized DDCI2 space; (6) complete transformation of
the 2-electron integrals with the truncated set of EC-DMOs;
(7) generation of the DDCI2 space (depending on the point
group of the molecule, different DDCI2 subspaces according
to different irreducible representations, IR) and diagonalization;
(8) calculation of the coupling constant from the energy
difference.

4. Results

The structural and magnetic properties of Ni(II) dimers with
two halide or azide bridging ligands have been the object of
many studies.2-4 It appears, in general, that the coupling
constant strongly depends on the structural parameters, the Ni-
Ni distance and the bridge angle, Ni-X-Ni. The type of
coordination of the Ni atom or the nature of the external ligands
seems to have slight influence on the coupling, provided they
keep theirσ-donor character. The two complexes studied here,
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[Ni(en)2Cl]22+ (1b)2 and [Ni(terpy)(N3)]22+ (2b),3 have been
reported to be ferromagnetic, although the first one has a small
coupling constantJ. The calculations were performed on two
model complexes, [Ni(NH3)4Cl]22+ (1a) (Figure 1), and [Ni-
(NH3)4(N3)]22+ (2a) (Figure 2), where the geometry of the Ni-
(µ-X)2-Ni unit, with X ) Cl- or N3

-, was taken from the
crystallographic data for1b and 2b, respectively, and the
external ligands were modeled by ammonia groups to maintain
the coordination surrounding of the metal. It should be pointed
out that the use of model ligands is unavoidable if high-level
calculations are to be performed using a reasonable amount of
computer memory and time, as other authors have already
mentioned.21,22 We will first report the results obtained in the
full DDCI2 calculation of the coupling constants of complexes
1aand2a (Figures 1 and 2). These results will then be used as
a benchmark to analyze the convergence of the truncation
procedure.
4.1. Computational Details. All calculations were per-

formed with a [3s,2p,2d] basis set for the Ni atoms, two different
basis sets of doubleú (DZ) and doubleú plus polarization (DZP)
quality for the bridge atoms Cl and N, and a SZ basis set for
external NH3 groups. An additional diffuse s function was
added (ú ) 0.05) to the CI basis set. Core potentials were used
in all calculations.27,28 A restricted open-shell SCF (OSRHF)
calculation was performed for the highest multiplicity, a quintet
state, of the complex. The resulting MOs were used in the
2-electron integral transformation. The DDCI2 space was then
generated. The transition energies were obtained from differ-
ences of the eigenvalues corresponding to the most stable
quintet, triplet, and singlet states, and the exchange coupling
constant were evaluated from the differences of the correspond-
ing eigenvalues of the Heisenberg Hamiltonian:E(S)2) -
E(S)1) ) -4J, E(S)1) - E(S)0) ) -2J. Both differences
will be calculated to verify the validity of this approximation.
As far as the geometry is concerned, in both models the

experimental geometry of the metal-bridge ligand-metal unit
was closely reproduced. The geometry of this unit is heavily
dependent on the external ligands and counterions, and it is well-
known that the coupling constant is very sensitive to geometry
changes. The use of model compounds in this type of
calculation justifies the fact that no optimization is performed.
4.2. Exchange Coupling Constants for the Complexes [Ni-

(NH3)4Cl] 22+ and [Ni(NH3)4(N3)]22+. The experimental ge-
ometry of the complex [Ni(en)2Cl]22+ (1b)2 gives an approxi-
mately octahedral nickel environment, with only small distortions
in the ethylenediamine ligands In the model complex1a, the
experimental geometry of the Ni-(µ-Cl)2-Ni unit has been
maintained, and the external ligands are modeled through
ammonia groups, in an octahedral coordination. Since the Ni-
Cl distances differ by about 0.1 Å, the structure belongs to the
C2h point group.
The set of MOs was obtained from the open-shell restricted

Hartree-Fock (OSRHF) calculation of the quintet state, with
two ag and two bu active MOs, built from bonding and
antibonding combinations of almost pure 3d orbitals of both
metal atoms, 3dxy(Ni1) ( 3dxy(Ni2) and 3dz2,3dx2-y2(Ni1) (
3dz2,3dx2-y2(Ni2). The lowest quintet, triplet, and singlet are
respectively the5Ag, the3Bu, and the1Ag states. Two different
DDCI2 subspaces, one for each IR, are built, the dimensions
of which are 117 348 and 117 128 determinants for the Ag and

the Bu IR, respectively, with the DZ basis set, and 137 828 and
137 588 with the DZP basis set. As expected, the values of
the coupling constants are independent of the roots chosen to
evaluate them. Small coupling constants were found,J ) 1.1
cm-1 in DZ andJ ) 1.8 cm-1 in DZP basis sets, respectively,
and were in good agreement with the experimental value2 of
3.5 cm-1.
In the [Ni(terpy)(N3)]22+ (2b)3 complex, the coordination of

the azide anion is of the end-on type. From the crystallographic
data, in the Ni-(µ-N3)2-Ni unit the Ni-Ni distance is 3.27 Å
and the Ni-N-Ni angle 101.3° and the structure has an
inversion center. Since the Ni-N(azido) distances are slightly
different and the out-of-plane distortion of the azido groups is
about 30°, the structure of the unit is centrosymmetric. In the
model 2a, the external ligands were substituted by ammonia
groups. In order to reduce the size of the calculation, the Ni-N
distances were symmetrized in the model, and all the remaining
structural parameters of the Ni-(µ-N3)2-Ni unit were taken
from the crystallographic data. Two different structures were
considered. The first one, in which the Ni-(µ-N3)2-Ni unit is
planar, belongs to theD2h point group and gives a simplified
model which verifies at low computational cost that the value
of the coupling constant is independent of the roots considered.
As in the previous case the singly-occupied MOs given by the
OSRHF calculation are bonding and antibonding combinations
of dxy orbitals of the metal atoms, of b2u and b1g symmetries,
and of 3dz2,3dx2-y2 orbitals, of ag and b3u symmetries. The lowest
quintent, triplet, and singlet states are respectively the5Ag, 3B3u,
and1Ag states. The dimensions of the Ag and the B3u DDCI2
subspaces are 96 808 and 96 432 determinants, respectively, with
the DZ basis set and 136 648 and 136 248 determinants with
the DZP basis set. The calculated constants are again quite
similar with both basis sets, 13.3 and 14.0 cm-1, and as expected
are independent of the pair of roots chosen.
The second geometry, which belongs to theC2h point group,

is closer to the experimental one. The out-of-plane distortion
of the azido groups was introduced, and the positions of the
ammonia ligands were distorted from the octahedral coordination
according to the experimental geometry. The above results
show that the basis set does not greatly influence the value of
the coupling constant, and therefore only the DZ basis set is
used in this case. Since theD2h calculation showed the trend
expected from the Heisenberg Hamiltonian, only the spaces with
the highest spin, corresponding to5Ag and3Au, were diagonal-
ized, giving a coupling constant of 21.1 cm-1, in excellent
agreement with the experiment,J) 20 cm-1. Moreover, these
two calculations show that, to obtain a reasonable estimate of
the coupling constant, the role of the out-of-plane distortion is
not crucial since the sign and the order of the magnitude are
preserved.
The ferromagnetic character of both compounds at the DDCI2

level of calculation arises from complex contributions of
different signs: the potential exchange and the kinetic exchange
introduced by Anderson7 and discussed by Hay et al.,8 the
contributions due to double-spin polarization, charge transfer,
or polarization of the ionic forms, as well as higher order
contributions. The value of the coupling constant obtained at
the zeroth order, i.e. the value obtained by diagonalizing the
CAS, may help us to interpret the results. The zeroth-order
coupling constants are significantly positive in both molecules,
which indicates that the antiferromagnetic kinetic exchange
contribution is less important than that of the ferromagnetic
potential exchange, since only these two contributions are
included at this level of calculation. The sign of the remaining
effects is not easily predictable. In the present case, these effects

(27) (a) Barthelat, J. C.; Durand, Ph.Gazz. Chim. Ital. 1978, 108, 225. (b)
Pelissier, M.; Durand, Ph.Theor. Chim. Acta1980, 55, 43.

(28) The calculations were made with the PSHF-CIPSI package written
by J. P. Daudey, J. P. Malrieu, D. Maynau, M. Pelissier, F.
Spiegelmann, R. Caballol, S. Evangelisti, F. Illas, J. Rubio. Generation
of the DDCI-DDCI2 space program was written by O. Castell.
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appear to be globally slightly antiferromagnetic, since they
reduce the value of theJ from the CAS value.
4.3. Reduction of the DDCI2 Space: Use of Exchange

Coupling Dedicated MOs. To test the performance of this
MO truncation technique, which enables the coupling constant
to be calculated in greater systems than the present Ni(II)
binuclear complexes, we performed the MO transformation in
both complexes. The first step, as described above, is to localize
the active MOs, by simply performing aπ/4 rotation. After
partial transformation of the 2-electron integrals, the EC-DMOs
are obtained by diagonalizing the participation matrix and
ordered according to the absolute values of the eigenvalues.
Since the value of the coupling constant is greater for complex

2a, it is easier to analyze the performance of the transformation
technique from the convergence of the values of the coupling
constants, and we will discuss this first.
Let us give an illustration of the effect of transforming the

MOs. Figure 3 plots the isodensity curves of the most
participating virtual EC-DMO belonging to the b1g IR (part a)
and the closest canonical antecedents (parts b and c) for complex
2a. The main effect is the concentration of the density in the
bridge region, as well as near the magnetic centers, at the
expense of the external ligands. The effect of the transformation
on the occupied subset is less significant. Comparable conclu-
sions emerged from the preliminary calculations on the biradical
[Cu2Cl6]2- complex.16

In order to analyze the convergence of the coupling constant
values, different truncations from different thresholds of the
participation numbers were performed. Five different EC-DMO
subsets were selected, by freezing the MOs with absolute values
of the participation numbers lower than 10-4, 5× 10-4, 10-3,
5 × 10-3, and 10-2, respectively. Then for each subset the
DDCI2 spaces belonging to the different IR were built and
diagonalized, and the coupling constant was determined. For
the sake of comparison, equivalent spaces were generated with
the canonical MO set by freezing the same number of molecular
orbitals for each IR. The coupling constant was then calculated
for both types of MOs. Table 1 shows the convergence of the
procedure against the percentage of EC-DMOs kept in the
selection. The size of the Ag subspace is also indicated. It is
evident from the comparison that, with about 70% of the MO
set, the total convergence of the value of the coupling constant
is reached when the transformed orbitals are used, while there
are considerable instabilities with the canonical set even when
a high number of MOs is included. The important consequences
of this are the reduction in the dimension of the DDCI2 space
to about 50%, as well as the decrease in the size of the file of
the 2-electron molecular integrals to about 30%. The same
behavior is shown by complex1a, as shown in Figure 4, which
plots the convergence of the coupling constant against the

percentage of selected MOs. As in two active electron
systems,16 the use of the EC-DMOs permits the dimension of
the DDCI2 space to be reduced by half with no loss of accuracy.

Table 1. Convergence of the Coupling Constant against the
Fraction of MOs Kept in the DDCI2 Space in Complex2aa

% selected MOs ndet f(DMOs) f(CMOs)

48 21 784 1.07 0.41
57 34 044 1.14 0.78
72 51 496 1.00 0.82
77 57 128 1.00 0.35
94 84 720 1.00 1.15
100 96 808 1.00 1.00

a f is the ratio between theJ corresponding to the considered fraction
of MOs and theJ corresponding to the complete set of MOs. DMOs:
exchange coupling dedicated MOs. CMOs: canonical MOs. The size
ndet of the corresponding Ag subspace is also indicated.

Figure 3. Isodensity curves of the virtual EC-DMO with greatest
participation number of b1g symmetry (a) and the closest canonical
antecedents (b, c) for2a (xy plane).

1614 Inorganic Chemistry, Vol. 35, No. 6, 1996 Castell et al.



5. Conclusions

The results show that the DDCI2 method provides accurate
estimations of the magnetic exchange coupling constants, and
in the least favorable case the value only differs by 6 cm-1

from the reported experimental value, estimated from the
magnetic susceptibility-temperature curves. The sign and the
magnitude of the coupling are correctly predicted, even in the
case of very weak coupling, as in the dichloride-bridged
complex. When compared with the few accurate calculations
that have been published on similar systems, the DDCI2 results

appear to be excellent. Since the size of the CI space increases
only with the square of the dimension of the basis set, the
method appears to be less expensive than other high-level CI
treatments.

The second important feature is that the EC-DMOs and the
participation numbers associated with them provide a good
criterion for truncating the molecular basis set with no loss of
accuracy in the determination of the exchange coupling param-
eter. The efficiency of the transformation has already been
shown in biradical systems, but the generalization to more
complex magnetic problems involving a large number of heavy
atoms and/or active electrons has more impact, since increasing
basis sets and CI spaces are involved and the manageability
limits of the problem are rapidly reached. The combination of
this truncation technique and the DDCI2 method provides a
powerful tool for treating magnetic problems. Work is in
progress on the structural dependence of the coupling constant
of both diazido-bridged Ni(II) and dihydroxo-bridged Cr(III)
binuclear complexes.
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Figure 4. Convergence of the coupling constant against the percentage
of transformed MOs for1a. f is the ratio between theJ corresponding
to the considered fraction of MOs and theJ corresponding to the
complete set of MOs.
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